If it's not what You are looking for type in the equation solver your own equation and let us solve it.
5y^2+3=38
We move all terms to the left:
5y^2+3-(38)=0
We add all the numbers together, and all the variables
5y^2-35=0
a = 5; b = 0; c = -35;
Δ = b2-4ac
Δ = 02-4·5·(-35)
Δ = 700
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{700}=\sqrt{100*7}=\sqrt{100}*\sqrt{7}=10\sqrt{7}$$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-10\sqrt{7}}{2*5}=\frac{0-10\sqrt{7}}{10} =-\frac{10\sqrt{7}}{10} =-\sqrt{7} $$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+10\sqrt{7}}{2*5}=\frac{0+10\sqrt{7}}{10} =\frac{10\sqrt{7}}{10} =\sqrt{7} $
| 10(5+c=8(c-3) | | 180=(90-5x)+62-2x | | 12x=2x-80 | | 10x−9 =−0.4. | | 14+4x=-15 | | 180=(4x+40)+46 | | 2/11m(33)+16=4+6/11(33) | | 7t+12=19 | | 5x+32=154 | | 1/3y+1/5/6+12=32 | | 45=5(y+74) | | 2a+20.4=1.6+a | | 180=(47+2x)+129 | | 19x=-8x | | 7x+12=12x+26 | | 8m+13=77 | | 6(x)=-1 | | 7b+10=17 | | 1/6x-3/4x+1/2=28 | | 5(t-9)=11 | | 213=m+145 | | -73=-17+7c | | 13+m=41 | | -9s+24=-39 | | 48=10u+8 | | 2014+t=77 | | -10=n+27 | | (x-5)(10-4x)=0 | | Y=6x+7;(2,21) | | 13+4n=65 | | 9+45+7y-1=180 | | 4m2+12m+5=0 |